题目内容
【题目】某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.
甲种客车 | 乙种客车 | |
载客量/(人/辆) | 45 | 30 |
租金/(元/辆) | 400 | 280 |
(1)共需租多少辆客车?
(2)请给出最节省费用的租车方案.
【答案】(1)客车总数为6;(2)租4辆甲种客车,2辆乙种客车费用少.
【解析】(1)由师生总数为240人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有1名教师,即可得出结论;
(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,根据师生总数为240人以及租车总费用不超过2300元,即可得出关于x的一元一次不等式,解不等式即可得出x的值,再设租车的总费用为y元,根据“总费用=租A种客车所需费用+租B种客车所需费用”即可得出y关于x的函数关系式,根据一次函数的性质结合x的值即可解决最值问题.
(1)∵(234+6)÷45=5(辆)…15(人),∴保证240名师生都有车坐,汽车总数不能小于6;
∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;
综上可知:共需租6辆汽车.
(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:
,
解得:≤x≤2.
∵x为整数,∴x=1,或x=2.
设租车的总费用为y元,则y=280x+400×(6﹣x)=﹣120x+2400.
∵﹣120<0,∴当x=2时,y取最小值,最小值为2160元.
故租甲种客车4辆、乙种客车2辆时,所需费用最低,最低费用为2160元.
练习册系列答案
相关题目