题目内容
【题目】如图所示,已知△ABC中,∠BAC=90°,AB=AC,∠BAD=30°,AD=AE,则∠EDC的度数为( )
A.10°B.15°C.20°D.30°
【答案】B
【解析】
∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形, ∴∠B=45°,又∵∠BAD=30°,∴∠DAE= ∠BAC -∠BAD =60°,而AD=AE,∴△ADE为等边三角形,即∠ADE= 60°,∵∠ADC是△ABD的一个外角, ∴∠ADC=∠B+∠BAD=75°,而∠EDC=∠ADC-∠ADE=15°.
试题要从题目中找到要求角相关的条件,由题, ∠BAC=90°,AB=AC,所以△ABC为等腰直角三角形,所以∠B=45°,又因为∠BAD=30°,所以∠DAE= ∠BAC -∠BAD =60°,而AD=AE,所以△ADE为等边三角形,即∠ADE= 60°,因为∠ADC是△ABD的一个外角,所以∠ADC=∠B+∠BAD=75°,而∠EDC=∠ADC-∠ADE=15°.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克) | … | 50 | 60 | 70 | 80 | … |
销售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?