题目内容
【题目】如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,AD与BE相交于点F,且AE=CD.
(1)求证:AD=BE;
(2)求∠BFD的度数.
【答案】(1)见解析;(2)60°.
【解析】
(1)利用等边三角形的性质得到一对边相等,一对角相等,再根据已知边相等,利用SAS得到三角形全等,利用全等三角形的对应边相等即可得证;
(2)利用全等三角形对应角相等得到一对角相等,再利用外角性质及等边三角形的性质求出所求角度数.
证明:如图,△ABC为等边三角形,
∴AB=AC, ∠BAC=∠C=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD,
∴AD=BE,
(2)由(1)得△ABE≌△CAD,
∴∠ABE=∠CAD,
又∠BFD是△ABF的外角,
∴∠BFD=∠BAD+∠ABE=∠BAD+∠CAD,
又∠BAC=∠BAD+∠CAD=60°,
∴∠BFD=60°.
练习册系列答案
相关题目