题目内容
【题目】已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使EF=EB,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.
【答案】点H是线段AB的黄金分割点;理由见解析.
【解析】
根据黄金分割点的定义,假设正方形ABCD的边长为2a,通过线段间的关系,找出用a表示的线段AH、AB,HB,证明AH2=ABHB即可.
设正方形ABCD的边长为2a,
在Rt△AEB中,依题意,得AE=a,AB=2a,
由勾股定理知EB==a,
∴AH=AF=EF﹣AE=EB﹣AE=(﹣1)a,
HB=AB﹣AH=(3﹣)a;
∴AH2=(6﹣2)a2,
ABHB=2a×(3﹣)a=(6﹣2)a2,
∴AH2=ABHB,
所以点H是线段AB的黄金分割点.
练习册系列答案
相关题目
【题目】自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数 | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累计车费 | 0 | 0.5 | 0.9 | 1.5 |
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数 | 0 | 1 | 2 | 3 | 4 | 5 |
人数 | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)写出的值;
(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.