题目内容
【题目】如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是_____.
①AE=CF,
②AP=EF,
③△EPF是等腰直角三角形,
④四边形AEPF的面积是△ABC面积的一半.
【答案】①③④.
【解析】
根据等腰直角三角形的性质得:∠B=∠C=45°,AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.
∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,
∴∠B=∠C=45°,AP⊥BC,AP=BC=PC=BP,∠BAP=∠CAP=45°,
∵∠APF+∠FPC=90°,∠APF+∠APE=90°,
∴∠FPC=∠EPA.
∴△APE≌△CPF(ASA),
∴AE=CF;EP=PF,即△EPF是等腰直角三角形;故①③正确;
S△AEP=S△CFP,
∵四边形AEPF的面积=S△AEP+S△APF=S△CFP+S△APF=S△APC=S△ABC,
∴四边形AEPF的面积是△ABC面积的一半,故④正确
∵△ABC是等腰直角三角形,P是BC的中点,
∴AP=BC,
∵EF不是△ABC的中位线,
∴EF≠AP,故②错误;
故答案为:①③④.
练习册系列答案
相关题目