题目内容
如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为E,点F在BD上,连接AF、EF.
(1)求证:DA=DE;
(2)如果AF∥CD,求证:四边形ADEF是菱形.
(3)如果∠C=60°,EC=3,求AB的长.
(1)求证:DA=DE;
(2)如果AF∥CD,求证:四边形ADEF是菱形.
(3)如果∠C=60°,EC=3,求AB的长.
证明:(1)∵BC=CD,
∴∠CDB=∠CBD,
∵AD∥BC,
∴∠ADB=∠CBD,
∴∠ADB=∠CDB,
又∵AB⊥AD,BE⊥CD,
∴∠BAD=∠BED=90°,
在△ABD和△EBD中,
∵
∴△ABD≌△EBD(AAS),
∴AD=ED.
(2)∵AF∥CD,∴∠AFD=∠EDF,
∴∠AFD=∠ADF,即得AF=AD,
又∵AD=ED,
∴AF=DE,
∴四边形ADEF是平行四边形,
又∵AD=ED,
∴四边形ADEF是菱形;
(3)∵∠C=60°,EC=3,tan60°=
=
,
∴BE=3
,
∵AB=BE,
∴AB=3
.
∴∠CDB=∠CBD,
∵AD∥BC,
∴∠ADB=∠CBD,
∴∠ADB=∠CDB,
又∵AB⊥AD,BE⊥CD,
∴∠BAD=∠BED=90°,
在△ABD和△EBD中,
∵
|
∴△ABD≌△EBD(AAS),
∴AD=ED.
(2)∵AF∥CD,∴∠AFD=∠EDF,
∴∠AFD=∠ADF,即得AF=AD,
又∵AD=ED,
∴AF=DE,
∴四边形ADEF是平行四边形,
又∵AD=ED,
∴四边形ADEF是菱形;
(3)∵∠C=60°,EC=3,tan60°=
BE |
CE |
3 |
∴BE=3
3 |
∵AB=BE,
∴AB=3
3 |
练习册系列答案
相关题目