题目内容

【题目】如图,在等边三角形ABC中,点PBC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PDAC于点D,已知AB=a,设CD=y,BP=x,则yx函数关系的大致图象是(  )

A. B. C. D.

【答案】C

【解析】

根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出.

∵△ABC为等边三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,

,

y=- x2+x.

故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网