题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
A. B. C. D.
【答案】C
【解析】
试题分析:先根据勾股定理求出AB的长,过C作CM⊥AB,交AB于点M,由垂径定理可知M为AD的中点,由三角形的面积可求出CM的长,在Rt△ACM中,根据勾股定理可求出AM的长,进而可得出结论.
解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB===5,
过C作CM⊥AB,交AB于点M,如图所示,
∵CM⊥AB,
∴M为AD的中点,
∵S△ABC=ACBC=ABCM,且AC=3,BC=4,AB=5,
∴CM=,
在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,
解得:AM=,
∴AD=2AM=.
故选C.
练习册系列答案
相关题目