题目内容

【题目】如图①,已知AB⊥BD,ED⊥BD,AB=CD,BC=DE

(1)求证:△ABC≌△CDE

(2)试判断AC与CE的位置关系,并说明理由.

(3)若将CD沿CB方向平移得到图②的情形,其余条件不变,此时第(2)问中AC与CE的位置关系还成立吗?请说明理由。

【答案】(1)见解析;(2)AC⊥CE ,理由见解析;(3)成立,理由见解析

【解析】

1)利用SAS证明△ABC≌△CDE

2)根据△ABC≌△CDE,即可推出ACCE
2)结论成立,根据已知推出△ABC1≌△C2DE,即可推出结论.

1∵AB⊥BD,ED⊥BD

∴∠ABC=∠CDE=90°

ABCCDE

∴△ABC≌△CDESAS

2AC⊥CE ,理由如下:

由(1)得:ABC≌△CDE

∴∠A=∠DCE

∵AB⊥BDED⊥BD

∴∠B=∠D=90°

∴∠A+∠ACB=90°

∴∠DCE+∠ACB=90°

∴∠ACE=90°

∴AC⊥CE

(3)成立,理由如下:

∵AB⊥BDED⊥BD

∴∠B=∠D=90°

ABC1C2DE

∴△ABC1≌△C2DE

∴∠A=∠EC2D

∵∠A+∠AC1B=90°

∴∠EC2D+∠AC1B=90°

∴∠AME=90°

∴AC1⊥EC2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网