题目内容
【题目】已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.
根据以上信息,解答下列问题:
(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
【答案】(1)A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨(2)3种租车方案:方案一:A型车9辆,B型车1辆;
方案二:A型车5辆,B型车4辆;
方案三:A型车1辆,B型车7辆.
(3)方案三:A型车1辆,B型车7辆,最少租车费为940元.
【解析】
试题分析:(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;
(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;
(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.
解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,
依题意列方程组得:
,
解方程组,得:,
答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.
(2)结合题意和(1)得:3a+4b=31,
∴a=
∵a、b都是正整数
∴或或
答:有3种租车方案:
方案一:A型车9辆,B型车1辆;
方案二:A型车5辆,B型车4辆;
方案三:A型车1辆,B型车7辆.
(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,
∴方案一需租金:9×100+1×120=1020(元)
方案二需租金:5×100+4×120=980(元)
方案三需租金:1×100+7×120=940(元)
∵1020>980>940
∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.
【题目】甲乙两支篮球队进行了5场比赛,比赛成绩绘制成了统计图(如图)
(1)、请根据统计图填写下表
平均数 | 中位数 | 方差 | |
甲 | |||
乙 |
(2)、如果从两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、方差以及获胜场数这三个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?
【题目】(本题9分)为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(单位:分钟),他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完成的频数分布直方图.
“通话时长” x/分钟 | 0<x≤3 | 3<x≤6 | 6<x≤9 | 9<x≤12 | 12<x≤15 | 15<x≤18 |
次数 | 36 | a | 8 | 12 | 8 | 12 |
根据图、表提供的信息,解答下列问题:
(1)a= ,样本容量是 ,并将这个频数分布直方图补充完整;
(2)求样本中“通话时长”不超过9分钟的频率;
(3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.