题目内容
已知△ABC中,AB=AC,∠BAC=120°,在BC上取一点O,以O为圆心、OB为半径作圆,且⊙O过A点.
(Ⅰ)如图①,若⊙O的半径为5,求线段OC的长;
(Ⅱ)如图②,过点A作AD∥BC交⊙O于点D,连接BD,求
的值.
(Ⅰ)如图①,若⊙O的半径为5,求线段OC的长;
(Ⅱ)如图②,过点A作AD∥BC交⊙O于点D,连接BD,求
BD |
AC |
(1)∵△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵OA=OB,
∴∠BAO=∠B=30°,
∴∠AOC=30°+30°=60°,
∴∠OAC=90°,
∵OA=5,
∴OC=2AO=10.
(2)连接OD,
∵∠AOC=60°,AD∥BC,
∴∠DAO=∠AOC=60°,
∵OD=OA,
∴∠ADO=60°,
∴∠DOB=∠ADO=60°,
∵OD=OB,
∴△DOB是等边三角形,
∴BD=OB=OA,
在Rt△OAC中,OC=2BD,由勾股定理得:AC=
BD,
∴
=
.
∴∠B=∠C=30°,
∵OA=OB,
∴∠BAO=∠B=30°,
∴∠AOC=30°+30°=60°,
∴∠OAC=90°,
∵OA=5,
∴OC=2AO=10.
(2)连接OD,
∵∠AOC=60°,AD∥BC,
∴∠DAO=∠AOC=60°,
∵OD=OA,
∴∠ADO=60°,
∴∠DOB=∠ADO=60°,
∵OD=OB,
∴△DOB是等边三角形,
∴BD=OB=OA,
在Rt△OAC中,OC=2BD,由勾股定理得:AC=
3 |
∴
BD |
AC |
| ||
3 |
练习册系列答案
相关题目