题目内容

已知点A(1,y1),B(-
2
y2
),C(-2,y3)在函数y=
1
2
x2-
1
2
的图象上,则y1、y2、y3的大小关系是(  )
分析:根据二次函数图象上点的坐标特征,将A、B、C三点分别代入函数解析式,分别求得y1、y2、y3的值,然后根据不等式的基本性质来比较它们的大小.
解答:解:∵点A(1,y1),B(-2,y2),C(-3,y3)在函数y=
1
2
x2-
1
2
的图象上,
∴点A(1,y1),B(-
2
,y2),C(-2,y3)都满足函数解析式y=
1
2
x2-
1
2

∴y1=0,
y2=
1
2
×2-
1
2
=
1
2

y3=
1
2
×4-
1
2
=
3
2

∴y1<y2<y3
故选A.
点评:本题考查了二次函数图象上点的坐标特征.二次函数图象上的点的坐标,都满足该函数图象的关系式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网