题目内容
【题目】如图,在平面直角坐标系中,已知矩形OABC的三个顶点A(0,10),B(8,10),C(8,0),过O、C两点的抛物线y=ax2+bx+c与线段AB交于点D,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒.请问当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?
(3)若点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M、N、C、E为顶点四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
【答案】
(1)解:∵四边形ABCO为矩形,
∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10,
∴△BDC≌△EDC,
∴∠B=∠DEC=90°,EC=BC=10,ED=BD,
由勾股定理易得:EO=6.
∴AE=10﹣6=4,
设AD=x,则BD=ED=8﹣x,
由勾股定理,得x2+42=(8﹣x)2,
解得,x=3,
∴AD=3,
∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0),
则 ,
解得: ,
∴抛物线的解析式为:y=﹣ x2+ x
(2)解:如图1,
当CP=CQ时,
10﹣2t=t,t= ;
如图2,当CP=PQ时,
= ,t= ;
如图3,当CQ=PQ时,
= ,t=
(3)解:假设存在符合条件的M、N点,分两种情况讨论:
EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,
若四边形MENC是平行四边形,那么M点必为抛物线顶点;
则:M(4, );
而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,
则N(4,﹣ );
②EC为平行四边形的边,则EC∥MN,设N(4,m),
则M(4﹣8,m+6)或M(4+8,m﹣6);
将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,
此时 N(4,﹣38)、M(﹣4,﹣32);
将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,
此时 N(4,﹣26)、M(12,﹣32),
综上,存在符合条件的M、N点,且它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4, ),N3(4,﹣ ).
【解析】(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式;(2)分CP=CQ、CP=PQ、PQ=CQ三种情况讨论,根据等腰三角形的性质和相似三角形的判定和性质解答即可;(3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.
【题目】甲、乙两名工人同时加工同一种零件,现根据两人7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题:
相关统计量表:
量数 人 | 众数 | 中位数 | 平均数 | 方差 |
甲 |
|
| 2 |
|
乙 | 1 | 1 | 1 |
次品数量统计表:
天数 人 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
甲 | 2 | 2 | 0 | 3 | 1 | 2 | 4 |
乙 | 1 | 0 | 2 | 1 | 1 | 0 |
|
(1)补全图、表.
(2)判断谁出现次品的波动小.
(3)估计乙加工该种零件30天出现次品多少件?
【题目】某地城管需要从甲、乙两个仓库向A、B两地分别运送10吨和5吨的防寒物资,甲、乙两仓库分别有8吨、7吨防寒物资.从甲、乙两仓库运送防寒物资到A、B两地的运费单价(元/吨)如表1,设从甲仓库运送到A地的防寒物资为x吨(如表2).
表1
甲仓库 | 乙仓库 | |
A地 | 80 | 100 |
B地 | 60 | 40 |
表2
甲仓库 | 乙仓库 | |
A地 | 10-x | |
B地 |
(1)完成表2;
(2)求运送的总运费y(元)与x(吨)之间的函数表达式,并直接写出x的取值范围;
(3)求最低总运费.