题目内容
如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.(1)求证:△PFA∽△ABE;
(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.
分析:(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;
(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.
(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.
解答:(1)证明:∵AD∥BC,
∴∠PAF=∠AEB.
∵∠PFA=∠ABE=90°,
∴△PFA∽△ABE.
(2)解:若△EFP∽△ABE,则∠PEF=∠EAB.
∴PE∥AB.
∴四边形ABEP为矩形.
∴PA=EB=2,即x=2.
若△PFE∽△ABE,则∠PEF=∠AEB.
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴点F为AE的中点.
∵AE=
=2
,
∴EF=
AE=
.
∵
=
,即
=
,
∴PE=5,即x=5.
∴满足条件的x的值为2或5.
∴∠PAF=∠AEB.
∵∠PFA=∠ABE=90°,
∴△PFA∽△ABE.
(2)解:若△EFP∽△ABE,则∠PEF=∠EAB.
∴PE∥AB.
∴四边形ABEP为矩形.
∴PA=EB=2,即x=2.
若△PFE∽△ABE,则∠PEF=∠AEB.
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴点F为AE的中点.
∵AE=
AB2+BE2 |
5 |
∴EF=
1 |
2 |
5 |
∵
PE |
AE |
EF |
EB |
PE | ||
2
|
| ||
2 |
∴PE=5,即x=5.
∴满足条件的x的值为2或5.
点评:解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.
练习册系列答案
相关题目