题目内容
【题目】如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P为圆心,PA为半径的⊙P与对角线AC交于A,E两点.
(1)如图2,当⊙P与边CD相切于点F时,求AP的长;
(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围 .
【答案】(1)AP=;(2)<AP<或AP=5.
【解析】
(1)如图2所示,连接PF,在Rt△ABC中,利用勾股定理求出AC=8,设AP=x,则DP=10﹣x,PF=x,由⊙P与边CD相切于点F,根据已知可推导得出△DPF∽△DAC,根据相似三角形对应边成比例即可求得AP长;
(2)当⊙P与BC相切时,设切点为G,如图3,利用面积法求出PG=,然后分两种情况①⊙P与边AD、CD分别有两个公共点,②⊙P过点A、C、D三点,分别讨论即可得.
(1)如图2所示,连接PF,
在Rt△ABC中,由勾股定理得:AC==8,
设AP=x,则DP=10﹣x,PF=x,
∵⊙P与边CD相切于点F,
∴PF⊥CD,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∵AB⊥AC,
∴AC⊥CD,
∴AC∥PF,
∴△DPF∽△DAC,
∴,
∴,
∴x=,即AP=;
(2)当⊙P与BC相切时,设切点为G,如图3,
SABCD=×6×8×2=10PG,
PG=,
①当⊙P与边AD、CD分别有两个公共点时,<AP<,即此时⊙P与平行四边形ABCD的边的公共点的个数为4,
②⊙P过点A、C、D三点,如图4,⊙P与平行四边形ABCD的边的公共点的个数为4,
此时AP=5,
综上所述,AP的值的取值范围是:<AP<或AP=5.
故答案为:<AP<或AP=5.