题目内容
【题目】小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线和线段分别表示小泽和小帅离甲地的距离(单位:千米)与时间(单位:小时)之间函数关系的图象,则当小帅到达乙地时,小泽距乙地的距离为_________千米.
【答案】4
【解析】
由图象,通过点(1,8)和点(2,24)直线CD的解析式,求点C的横坐标,即可求出点A的坐标,从而可以求出直线AB的函数解析式,小帅到达乙地的时间为2小时,则将x=2代入直线AB解析式即可知此时小泽的位置,从而可以求出当小帅到达乙地时,小泽距乙地的距离.
解:由图象可得,点(1,8)和点(2,24)在直线CD上,设直线CD的解析式为:y1=kx+b
代入得,
,解得,
∴y1=16x-8
∴当y=0时,0=16x-8,解得,x=
∴点C(,0)点A(,8)
∵点A(,8),点B(2.5,24)在直线AB上,
∴设直线AB的解析式为:y2=kx+b
代入得
,
解得
∴y2=8x+4
∴当x=2时,y2=8×2+4=20,
∴此时小泽距离乙地的距离为:24-20=4千米
故答案为:4
【题目】有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.
下面是小彤探究的过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | … |
y | … | m | 0 | ﹣1 | 3 | 2 | … |
则m的值为 ;
(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;
(4)观察图象,写出该函数的一条性质 ;
(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为 ;
【题目】某家庭记录了未使用节水龙头50天的日用水量(单位:m3)和使用了节木龙头50天的日用水量,得到频数分布表如下:
表1未使用节水龙头50天的日用水量频数分布表
日用水量x | 0≤x<0.1 | 0.1≤x<0.2 | 0.2≤x<0.3 | 0.3≤x<0.4 | 0.4≤x<0.5 | 0.5≤x<0.6 | 0.6≤x≤0.7 |
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
表2使用了节水龙头50天的日用水量频数分布表
日用水量x | 0≤x<0.1 | 0.1≤x<0.2 | 0.2≤x<0.3 | 0.3≤x<0.4 | 0.4≤x<0.5 | 0.5≤x<0.6 |
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)估计该家庭使用节水龙头后,日用水量小于0.3 m3的概率;
(2)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在范围的组中值作代表.)