题目内容
【题目】如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P显AD上一点,连接CP.
(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.
(2)若AE=BN,AN=CE,求证:AD=CM+2CE.
【答案】(1);(2)见解析.
【解析】
(1)作CG⊥AD于G,设PG=x,则DG=4-x,在Rt△PGC和Rt△DGC中,由勾股定理得出方程,解方程得出x=1,即PG=1,得出GC=4,求出AD=6,由三角形面积公式即可得出结果;
(2)连接NE,证明△NBF≌△EAF得出BF=AF,NF=EF,再证明△ANE≌△ECM得出CM=NE,由NF=NE=
MC,得出AF=
MC+EC,即可得出结论.
解:(1)解:作CG⊥AD于G,如图1所示:
设PG=x,则DG=4﹣x,
在Rt△PGC中,GC2=CP2﹣PG2=17﹣x2,
在Rt△DGC中,GC2=CD2﹣GD2=52﹣(4﹣x)2=9+8x﹣x2,
∴17﹣x2=9+8x﹣x2,
解得:x=1,即PG=1,
∴GC=4,
∵DP=2AP=4,
∴AD=6,
∴S△ACD=×AD×CG=
×6×4=12;
(2)证明:连接NE,如图2所示:
∵AH⊥AE,AF⊥BC,AE⊥EM,
∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,
∴∠NBF=∠EAF=∠MEC,
在△NBF和△EAF中, ,
∴△NBF≌△EAF(AAS),
∴BF=AF,NF=EF,
∴∠ABC=45°,∠ENF=45°,FC=AF=BF,
∴∠ANE=∠BCD=135°,AD=BC=2AF,
在△ANE和△ECM中,,
∴△ANE≌△ECM(ASA),
∴CM=NE,
又∵NF=NE=
MC,
∴AF=MC+EC,
∴AD=MC+2EC.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为了估计某地区供暖期间空气质量情况,某同学在20天里做了如下记录:
污染指数(ω) | 40 | 60 | 80 | 100 | 120 | 140 |
天数(天) | 3 | 2 | 3 | 4 | 5 | 3 |
其中ω<50时空气质量为优,50≤ω≤100时空气质量为良,100<ω≤150时空气质量为轻度污染.若按供暖期125天计算,请你估计该地区在供暖期间空气质量达到良以上(含良)的天数为( )
A.75B.65C.85D.100