题目内容
【题目】三角形ABC为等腰直角三角形,其中∠A=90°,BC长为6.
(1)建立适当的直角坐标系,并写出各个顶点的坐标;
(2)将(1)中各顶点的横坐标都加2,纵坐标保持不变,与原图案相比,所得的图案有什么变化?
(3)将(1)中各顶点的横坐标不变,将纵坐标都乘-1,与原图案相比,所得的图案有什么变化?
(4)将(1)中各顶点的横坐标都乘-2,纵坐标保持不变,与原图案相比,所得的图案有什么变化?
【答案】见解析.
【解析】
(1)以BC边所在的直线为x轴,BC的中垂线(垂足为O)为y轴,建立直角坐标系.因为BC的长为6,所以A(0,3),B(-3,0),C(3,0);
(2)横坐标都加2,纵坐标保持不变,与原图案相比,所得的图案向右平移了2个单位长度;
(3)将(1)中各顶点的横坐标不变,将纵坐标都乘-1,与原图案相比,所得的图案与原图案关于x轴对称;
(4)将(1)中各顶点的横坐标都乘-2,纵坐标保持不变,与原图案相比,所得的图案与原图形相比所得的图案在位置上关于y轴对称,横向拉长了2倍.
(1)以BC边所在的直线为x轴,BC的中垂线(垂足为O)为y轴,建立直角坐标系(如图).因为BC的长为6,所以AO=BC=3,所以A(0,3),B(-3,0),C(3,0)
(2)整个图案向右平移了2个单位长度,如图△A2B2C2;
(3)与原图案关于x轴对称,如图△A3BC;
(4)与原图形相比所得的图案在位置上关于y轴对称,横向拉长了2倍,如图△AB4C4.
练习册系列答案
相关题目