题目内容

【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

(1)甲登山上升的速度是每分钟   米,乙在A地时距地面的高度b   米.

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.

(3)登山多长时间时,甲、乙两人距地面的高度差为50米?

【答案】(1)10,30;(2)y=;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.

【解析】

(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;

(2)分0≤x≤2x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;

(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.

1)(300﹣100)÷20=10(米/分钟),

b=15÷1×2=30,

故答案为:10,30;

(2)当0≤x≤2时,y=15x;

x≥2时,y=30+10×3(x﹣2)=30x﹣30,

y=30x﹣30=300时,x=11,

∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=

(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).

10x+100﹣(30x﹣30)=50时,解得:x=4,

30x﹣30﹣(10x+100)=50时,解得:x=9,

300﹣(10x+100)=50时,解得:x=15,

答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网