题目内容
【题目】已知a=2017x﹣20,b=2017x﹣18,c=2017x﹣16,求a2+b2+c2﹣ab﹣ac﹣bc的值.
【答案】a2+b2+c2﹣ab﹣ac﹣bc的值为12.
【解析】
因式分解的应用
(一)原式×2=(a2+b2+c2﹣ab﹣ac﹣bc)×2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc
=(a2+b2﹣2ab)+(a2+c2﹣2ac)+(b2+c2﹣2bc)=(a﹣b)2+(a﹣c)2+(b﹣c)2.
将a=2017x﹣20,b=2017x﹣18,c=2017x﹣16代入上式得:原式×2=24.
所以原式=12
(二)原式= (2a2+2b2+2c2-2ab-2ac-2bc)
=[(a2-2ab+b2)+(a2-2ac+c2)+(b2-2bc+c2)]
=[(a-b)2+(a-c)2+(b-c)2]
=×[4+16+4]
=12.
答:a2+b2+c2﹣ab﹣ac﹣bc的值为12.
练习册系列答案
相关题目
【题目】我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.
(1)完成下列填空:
已知 | 用“<”或“>”填空 |
5+2_____3+1 | |
﹣3﹣1_____﹣5﹣2 | |
1﹣2_____4+1 |
(2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).请你说明上述性质的正确性.