题目内容

【题目】过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为(  )

A.2
B.3
C.
D.

【答案】A
【解析】解:∵矩形对边AD∥BC,
∴∠ACB=∠DAC,
∵O是AC的中点,
∴AO=CO,
在△AOF和△COE中,

∴△AOF≌△COE(ASA),
∴OE=OF,
又∵EF⊥AC,
∴四边形AECF是菱形,
∵∠DCF=30°,
∴∠ECF=90°﹣30°=60°,
∴△CEF是等边三角形,
∴EF=CF,
∵AB=
∴CD=AB=
∵∠DCF=30°,
∴CF=÷=2,
∴EF=2.
故选A.
【考点精析】利用矩形的性质对题目进行判断即可得到答案,需要熟知矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网