题目内容

如图,△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,BC、DE交于点O.则下列四个结论中,①∠1=∠2;②BC=DE;③△ABD∽△ACE;④A、O、C、E四点在同一个圆上,一定成立的有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
D
分析:由△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,根据全等三角形的性质,即可求得BC=DE,∠BAC=∠DAE,继而可得∠1=∠2,则可判定①②正确;由△ABC≌△ADE,可得AB=AD,AC=AE,则可得AB:AC=AD:AE,根据有两边对应成比例且夹角相等三角形相似,即可判定③正确;易证得△AEF∽△OCF与△AOF∽△CEF,继而可得∠OAC+∠OCE=180°,即可判定A、O、C、E四点在同一个圆上.
解答:解:∵△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,
∴∠BAC=∠DAE,BC=DE,故②正确;
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠1=∠2,故①正确;
∵△ABC≌△ADE,
∴AB=AD,AC=AE,

∵∠1=∠2,
∴△ABD∽△ACE,故③正确;
∵∠ACB=∠AEF,∠AFE=∠OFC,
∴△AFE∽△OFC,
,∠2=∠FOC,

∵∠AFO=∠EFC,
∴△AFO∽△EFC,
∴∠FAO=∠FEC,
∴∠EAO+∠ECO=∠2+∠FAO+∠ECO=∠FOC+∠FEC+∠ECO=180°,
∴A、O、C、E四点在同一个圆上,故④正确.
故选D.
点评:此题考查了相似三角形的判定与性质、全等三角形的性质以及四点共圆的知识.此题难度较大,注意数形结合思想的应用,注意找到相似三角形是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网