题目内容

【题目】已知:如图,在ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.
(1)说明△DCE≌△FBE的理由;
(2)若EC=3,求AD的长.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AB=DC,AB∥DC,

∴∠CDE=∠F,

又∵BF=AB,

∴DC=FB,

在△DCE和△FBE中,

∴△DCE≌△FBE(AAS)


(2)解:∵△DCE≌△FBE,

∴EB=EC,

∵EC=3,

∴BC=2EB=6,

∵四边形ABCD是平行四边形,

∴AD=BC,

∴AD=6


【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,即可得AB=DC,AB∥DC,继而可求得∠CDE=∠F,又由BF=AB,即可利用AAS,判定△DCE≌△FBE;(2)由(1),可得BE=EC,即可求得BC的长,又由平行四边形的对边相等,即可求得AD的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网