题目内容
![](http://thumb.zyjl.cn/pic3/upload/images/201205/34/69f86e6f.png)
(1)求点B,C,D的坐标;
(2)一个二次函数图象经过B,C,D三点,求这个二次函数解析式;
(3)P为x轴正半轴上的一点,过点P作与圆A相离并且与x轴垂直的直线,交上述二次函数图象于点F,当△CPF中一个内角的正切值为
1 | 2 |
分析:(1)由A的坐标得到OA的长,再由AD的长,利用AD-OA求出OD的长,确定出D的坐标,连接AC,由x轴于y轴垂直,得到三角形AOC为直角三角形,由AC及OA的长,利用勾股定理求出OC的长,确定出C的坐标,同理确定出B的坐标;
(2)设所求二次函数的解析式为y=ax2+bx+c,将第一问求出的B,C,D的坐标代入,得到关于a,b及c的方程组,求出方程组的解得到a,b及c的值,即可确定出所求抛物线的解析式;
(3)设P的坐标为(t,0),由过P与x轴垂直的直线与圆O外离,且半径为5,得到t大于5,由F在过P与x轴垂直的直线上,得到F的横坐标为t,将t代入抛物线解析式求出F的纵坐标,表示出F的坐标,进而表示出PC与PF,由∠CPF=90°,当△CPF中一个内角的正切值为
时,分两种情况考虑,CP比PF等于
,或PF比CP等于
,方百年列出关于t的方程,求出方程的解得到t的值,找出t大于5的解,即可确定出P的坐标.
(2)设所求二次函数的解析式为y=ax2+bx+c,将第一问求出的B,C,D的坐标代入,得到关于a,b及c的方程组,求出方程组的解得到a,b及c的值,即可确定出所求抛物线的解析式;
(3)设P的坐标为(t,0),由过P与x轴垂直的直线与圆O外离,且半径为5,得到t大于5,由F在过P与x轴垂直的直线上,得到F的横坐标为t,将t代入抛物线解析式求出F的纵坐标,表示出F的坐标,进而表示出PC与PF,由∠CPF=90°,当△CPF中一个内角的正切值为
1 |
2 |
1 |
2 |
1 |
2 |
解答:解:(1)∵点A的坐标为(0,-3),线段AD=5,
∴点D的坐标(0,2),
连接AC,如图所示:
![](http://thumb.zyjl.cn/pic3/upload/images/201205/51/0e5e454f.png)
在Rt△AOC中,∠AOC=90°,OA=3,AC=5,
∴OC=4,
∴点C的坐标为(4,0);同理可得点B坐标为(-4,0);
(2)设所求二次函数的解析式为y=ax2+bx+c,
由于该二次函数的图象经过B,C,D三点,
则
,
解得:
,
∴所求的二次函数的解析式为y=-
x2+2;
(3)设点P坐标为(t,0),由题意得t>5,
且点F的坐标为(t,-
t2+2),PC=t-4,PF=
t2-2,
∵∠CPF=90°,
∴当△CPF中一个内角的正切值为
时,
①若
=
时,即
=
,解得t1=12,t2=4(舍);
②当
=
时,即
=
,解得t1=0(舍),t2=4(舍),
则所求点P的坐标为(12,0).
∴点D的坐标(0,2),
连接AC,如图所示:
![](http://thumb.zyjl.cn/pic3/upload/images/201205/51/0e5e454f.png)
在Rt△AOC中,∠AOC=90°,OA=3,AC=5,
∴OC=4,
∴点C的坐标为(4,0);同理可得点B坐标为(-4,0);
(2)设所求二次函数的解析式为y=ax2+bx+c,
由于该二次函数的图象经过B,C,D三点,
则
|
解得:
|
∴所求的二次函数的解析式为y=-
1 |
8 |
(3)设点P坐标为(t,0),由题意得t>5,
且点F的坐标为(t,-
1 |
8 |
1 |
8 |
∵∠CPF=90°,
∴当△CPF中一个内角的正切值为
1 |
2 |
①若
CP |
PF |
1 |
2 |
t-4 | ||
|
1 |
2 |
②当
PF |
CP |
1 |
2 |
| ||
t-4 |
1 |
2 |
则所求点P的坐标为(12,0).
点评:此题属于二次函数的综合题,涉及的知识有:勾股定理,利用待定系数法求抛物线的解析式,锐角三角函数定义,以及平面直角坐标系与点的坐标,利用了转化及分类讨论的思想,同时第三问注意求出的t必须大于5.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目