题目内容

【题目】如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点HAE=CFBE=EG

1)求证:EF∥AC

2)求∠BEF大小;

【答案】(1)、证明过程见解析;(2)、60°.

【解析】试题分析:(1)、根据正方形的性质得出AD∥BF,结合AE=CF可得四边形ACFE是平行四边形,从而得出EF∥AC(2)、连接BG,根据EF∥AC可得∠F=∠ACB=45°,根据∠GCF=90°可得∠CGF=∠F=45°可得CG=CF,根据AE=CF可得AE=CG,从而得出△BAE≌△BCG,即BE=EG,得出△BEG为等边三角形,得出∠BEF的度数.

试题解析:(1)四边形ABCD是正方形 ∴AD∥BF ∵AE="CF" ∴四边形ACFE是平行四边形 ∴EF∥AC

(2)、连接BG ∵EF∥AC∴∠F=∠ACB=45°∵∠GCF=90°∴∠CGF=∠F=45°∴CG=CF

∵AE=CF∴AE=CG∴△BAE≌△BCGSAS∴BE=BG∵BE=EG∴△BEG是等边三角形,

∴∠BEF=60°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网