题目内容

【题目】如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2 ,反比例函数y= (x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为

【答案】(
【解析】解:如图1,
∵点D、E是反比例函数y= (x>0)的图象上的点,
∴设点D的坐标是(m, ),点E的坐标是(n, ),
又∵∠BCA=90°,AC=BC=2
∴C(n,0),B(n,2 ),A(n﹣2 ,0),
设直线AB的解析式是:y=ax+b,

解得
∴直线AB的解析式是:y=x+2 ﹣n.
又∵△BDE∽△BCA,
∴∠BDE=∠BCA=90°,
∴直线y=x与直线DE垂直,
∴点D、E关于直线y=x对称,
=
∴mn=3,或m+n=0(舍去),
又∵点D在直线AB上,
=m+2 ﹣n,mn=3,
整理,可得
2n2﹣2 n﹣3=0,
解得n= 或n=﹣ (舍去),
∴点E的坐标是( ).
所以答案是:( ).
【考点精析】本题主要考查了相似三角形的判定与性质的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网