题目内容
【题目】数轴上两点之间的距离等于相应两数差的绝对值,即:点A、B表示的数分别为a、b,这两点之间的距离为AB=,如:表示数1与5的两点之间的距离可表示为,表示数-2与3的两点之间的距离可表示为.
(1)数轴上表示2和7的两点之间的距离是 ,数轴上表示3和-6的两点之间的距离是 ;
(2)数轴上表示x和-2的两点M和N之间的距离是 ,如果,则x为 ;
(3)当式子:取最小值时,x的值为 ,最小值为 .
(借助数轴,画出图形,写出过程)
【答案】(1)|2-7|=5,|3-(-6)|=9;(2)|x+2|;-8或4;(3)3,6.
【解析】
(1)和(2)主要是根据数轴上两点之间的距离等于相对应两数差的绝对值或直接让较大的数减去较小的数,进行计算;
(3)结合数轴和两点间的距离进行分析.
解:(1)数轴上表示3和8的两点之间的距离是:|2-7|=5;
数轴上表示-3和-9的两点之间的距离是:|3-(-6)| =9;
故答案为:5,9;
(2)数轴上表示x和-2的两点M和N之间的距离是:|x+2|,
如果|MN|=6,则|x+2|=6,
∴x+2=±6,
解得:x=4或x=-8,
故答案为:|x+2|,4或-8;
(3)|x+2|+|x-3|+|x-4|的几何意义是:数轴上表示数x的点到表示-2、3、4的三
点的距离之和,
显然只有当x=3时,取到最小值;
∴当x=3时,
最小值为:;
【题目】为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如下图所示:
大赛结束后一个月,再次调查这部分学生“一周诗词诵背数量”,绘制成统计表:
一周诗词诵背数量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人 数 | 10 | 10 | 15 | m | 25 | 20 |
请根据调查的信息
(1)本次调查抽取了多少名学生?
(2)补全条形统计图,在扇形统计图中,“6首”的圆心角为 度;
(3)表格中m的值为 ;
(4)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
【题目】学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为县级先进班集体,下表是三个班的五项素质考评得分表。
五项素质考评得分表(单位:分)
班级 | 行为规范 | 学习成绩 | 校运动会 | 艺术获奖 | 劳动卫生 |
甲班 | 10 | 10 | 6 | 10 | 7 |
乙班 | 10 | 8 | 8 | 9 | 8 |
丙班 | 9 | 10 | 9 | 6 | 9 |
根据统计表中的信息回答下列问题:
(1)请你补全五项成绩考评分析表中的数据:
班级 | 平均分 | 众数 | 中位数 |
甲班 | 8.6 | 10 | ③ |
乙班 | 8.6 | ② | 8 |
丙班 | ① | 9 | 9 |
(2)参照上表中的数据,你推荐哪个班为县级先进班集体?并说明理由。
(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3∶2∶1∶1∶3的比确定班级的综合成绩,学生处的李老师根据这个综合成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,按照这个成绩,应推荐哪个班为县级先进班集体?为什么?