题目内容
如图,在四边形ABCD中,DB平分∠ADC,∠ABC=120°,∠C=60°,∠BDC=;延长CD到点E,连接AE,使得∠E=∠C.
(1)求证:四边形ABDE是平行四边形;
(2)若DC=12,求AD的长.
(1)求证:四边形ABDE是平行四边形;
(2)若DC=12,求AD的长.
(1)见解析 (2)6
(1)证明:∵∠ABC=120°,∠C=60°,
∴ ∠ABC+∠C=180°,
∴ AB∥DC,即AB∥ED.
又∵∠C=60°,∠E=∠C,∠BDC=30°,
∴∠E=∠BDC=30°,∴ AE∥BD.
∴ 四边形ABDE是平行四边形.
(2)解:由(1)得AB∥DC,AB≠DC,
∴ 四边形ABCD是梯形.
∵ DB平分∠ADC,∠BDC=30°,
∴∠ADC=∠C=60°.
∴ 四边形ABCD是等腰梯形,
∴BC=AD.
∵在△BCD中,∠C=60°,∠BDC=30°,
∴∠DBC=90°.
又已知DC=12,∴ AD=BC=DC=6.
∴ ∠ABC+∠C=180°,
∴ AB∥DC,即AB∥ED.
又∵∠C=60°,∠E=∠C,∠BDC=30°,
∴∠E=∠BDC=30°,∴ AE∥BD.
∴ 四边形ABDE是平行四边形.
(2)解:由(1)得AB∥DC,AB≠DC,
∴ 四边形ABCD是梯形.
∵ DB平分∠ADC,∠BDC=30°,
∴∠ADC=∠C=60°.
∴ 四边形ABCD是等腰梯形,
∴BC=AD.
∵在△BCD中,∠C=60°,∠BDC=30°,
∴∠DBC=90°.
又已知DC=12,∴ AD=BC=DC=6.
练习册系列答案
相关题目