题目内容
【题目】如图,已知直线y=x﹣6与x轴、y轴分别交于A、B两点,点P是以C(0,3)为圆心,3为半径的圆上一动点,连结PA、PB.
(1)求圆心C到直线AB的距离;
(2)求△PAB面积的最大值.
【答案】(1);(2)51.
【解析】
(1)求出A、B的坐标,根据勾股定理求出AB.过C作CM⊥AB于M,连接AC,MC的延长线交⊙C于N,则由三角形面积面积法求高,可知圆心C到直线AB的距离;
(2)由(1)中的数据即可求出圆C上点到AB的最大距离,根据面积公式求出即可.
解:解:(1)如图1,过C作于M,连接AC,MC的延长线交于N,
由题意:,,
,,.
,
则由三角形面积公式得,,
,
,
圆心C到直线AB的距离是;
(2)由(1)知,圆心C到直线AB的距离是.
则圆C上点到直线的最大距离是,
故面积的最大值是:.
练习册系列答案
相关题目
【题目】九(1)班同学为了解某小区家庭月均用水情况(单位:吨),随机调查了该小区部分家庭,并将调查数据进行如下整理:
月均用水量(吨) | 频数(户) | 频率 |
6 | 0.12 | |
0.24 | ||
16 | 0.32 | |
10 | 0.20 | |
4 | ||
25 | 2 | 0.04 |
请解答以下问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)若该小区有1000户家庭,根据调查数据估计,该小区月均有水量超过20吨的家庭大约有多少户?
【题目】我市华润生活超市准备一次性购进A、B两种品牌的饮料100箱,此两种饮料每箱的进价和售价如下表所示设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.
品牌 | A | B |
进价元箱 | 65 | 49 |
售价元箱 | 80 | 62 |
求y关于x的函数关系式;
由于资金周转原因,用于超市购进A、B两种饮料的总费用不超过5600元,并要求获得利润不低于1380元,则从两种饮料箱数上考虑,共有哪几种进货方案?利润售价进价