题目内容

【题目】某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y()与价格x(元/件)之间满足一次函数.

1)试求yx之间的函数关系式.

2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?

3)若要使某月的毛利润为1800元,售价应定为多少元?

【答案】1y=-30x+960;(224元,1920元;(326

【解析】

试题(1)设y=kx+b,把(23270)、(28120)代入根据待定系数法即可求得结果;

2)根据总利润=单利润×销售量即可得到函数关系式,再根据二次函数的性质即可求得结果;

3)根据毛利润为1800元即可列方程求解,最后注意解的取舍.

1)设y=kx+b,把(23270)、(28120)代入解得y=-30x+960

2w="(x-16)(-30x+960)" =-30(x-24)2+1920,当x=24时,w有最大值1920

销售价格定为24元时,才能使每月的毛利润最大,最大毛利润为1920元;

3)当时,即

解得(舍去),

某月的毛利润为1800元,售价应定为26.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网