题目内容
【题目】如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2 .
(1)求证:AC是⊙O的切线;
(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)
【答案】
(1)证明:连接OC,交BD于E,
∵∠B=30°,∠B= ∠COD,
∴∠COD=60°,
∵∠A=30°,
∴∠OCA=90°,
即OC⊥AC,
∴AC是⊙O的切线
(2)解:∵AC∥BD,∠OCA=90°,
∴∠OED=∠OCA=90°,
∴DE= BD= ,
∵sin∠COD= ,
∴OD=2,
在Rt△ACO中,tan∠COA= ,
∴AC=2 ,
∴S阴影= ×2×2 ﹣ =2 ﹣
【解析】(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)求出DE,解直角三角形求出OC,分别求出△ACO的面积和扇形COD的面积,即可得出答案.
练习册系列答案
相关题目