题目内容
【题目】如图,ABCD中,E为AD边的中点,把△ABE沿BE翻折,得到△FBE,连接DF并延长交BC于G.
(1)求证:四边形BEDG为平行四边形.
(2)若BE=AD=10,且ABCD的面积等于60,求FG的长.
【答案】
(1)解:证明:∵把△ABE沿BE翻折,得到△FBE,
∴AE=EF,∠AEB=∠FEB,
∴∠AEB= (180°﹣∠DEF),
∵E为AD边的中点,
∴AE=DE,
∴DE=EF,
∴∠EDF=∠EFD,
∴∠EDF= (180°﹣∠DEF),
∴∠AEB=∠EDF,
∴BE∥DG,
∵四边形ABCD是平行四边形,
∴DE∥BG,
∴四边形BEDG为平行四边形;
(2)解:解:如图,∵四边形BEDG为平行四边形,
∴DE=BG,DG=BE=10,
∵四边形ABCD是平行四边形,AE=DE,ABCD的面积等于60,
∴S△ABE= S平行四边形ABCD=15,
连接AF交BE于H,则AH⊥BE,AH=HF,
∵BE=10,
∴AH=3,
∴AF=6,
∵BE∥DG,
∴AF⊥DG,
∴DF= =8,
∴FG=DG﹣FD=2.
【解析】(1)根据折的性质得到AE=EF,∠AEB=∠FEB,由平角的定义得到∠AEB= (180°﹣∠DEF),由三角形的内角和得到∠EDF= (180°﹣∠DEF),根据平行四边形的判定定理即可得到结论;(2)由平行四边形的性质得到DE=BG,DG=BE=10,S△ABE= S平行四边形ABCD=15,连接AF交BE于H,于是得到AH⊥BE,AH=HF,根据勾股定理即可得到结论.
【考点精析】解答此题的关键在于理解平行四边形的判定与性质的相关知识,掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积,以及对翻折变换(折叠问题)的理解,了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.