题目内容
【题目】在平面直角坐标系中,已知直线yx+3与x轴、y轴分别交于A、B两点,点C在线段OB上,把△ABC沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是_____.
【答案】(0,)
【解析】
设C的坐标为(0,a),过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=a,DA=OA=4,则DB=5-4=1,BC=3-a,在Rt△BCD中,利用勾股定理得到a的方程,解方程求出a即可.
由题意可设C的坐标为(0,a),
过C作CD⊥AB于D,如图,
对于直线yx+3,
当x=0,得y=3,
当y=0,x=4,
∴A(4,0),B(0,3),即OA=4,OB=3,
∴AB=5,
又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,
∴AC平分∠OAB,
∴CD=CO=a,则BC=3-a,
∴DA=OA=4,
∴DB=5-4=1,
在Rt△BCD中,DC2+BD2=BC2,
∴a2+12=(3-a)2,解得a=,
∴点C的坐标为(0,),
故答案为:(0,).
练习册系列答案
相关题目