题目内容
【题目】已知二次函数的图象经过P(2,2),顶点为O(0,0),将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为( )
A.y=x2B.y=(x﹣2)2C.y=(x﹣4)2D.y=(x﹣2)2+2
【答案】C
【解析】
设原来的抛物线解析式为:y=ax2.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P的坐标代入即可.
设原来的抛物线解析式为:y=ax2(a≠0).
把P(2,2)代入,得2=4a,
解得a=.
故原来的抛物线解析式是:y=x2.
设平移后的抛物线解析式为:y=(x﹣b)2.
把P(2,2)代入,得2=(2﹣b)2.
解得b=0(舍去)或b=4.
所以平移后抛物线的解析式是:y=(x﹣4)2.
故选:C.
练习册系列答案
相关题目