题目内容

【题目】已知抛物线与x轴交于A60)、B0)两点,与y轴交于点C,过抛物线上点M13)作MNx轴于点N,连接OM

1)求此抛物线的解析式;

2)如图1,将△OMN沿x轴向右平移t个单位(0t5)到△OMN′的位置,MN′、MO′与直线AC分别交于点EF

①当点FMO′的中点时,求t的值;

②如图2,若直线MN′与抛物线相交于点G,过点GGHMO′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由

【答案】(1);(2)1;t=2时,EH最大值为

【解析】

试题分析:(1)设抛物线解析式为,把点M(1,3)代入即可求出a,进而解决问题.

(2))①如图1中,AC与OM交于点G.连接EO′,首先证明△AOC∽△MNO,推出OM⊥AC,在RT△EO′M′中,利用勾股定理列出方程即可解决问题.

②由△GHE∽△AOC得==,所以EG最大时,EH最大,构建二次函数求出EG的最大值即可解决问题.

试题解析:(1)设抛物线解析式为,把点M(1,3)代入得a=,∴抛物线解析式为,∴

(2)①如图1中,AC与OM交于点G.连接EO′.∵AO=6,OC=2,MN=3,ON=1,∴=3,∴,∵∠AOC=∠MON=90°,∴△AOC∽△MNO,∴∠OAC=∠NMO,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM⊥AC,∵△M′N′O′是由△MNO平移所得,∴O′M′∥OM,∴O′M′⊥AC,∵M′F=FO′,∴EM′=EO′,∵EN′∥CO,∴,∴,∴EN′=(5﹣t),在RT△EO′M′中,∵O′N′=1,EN′=(5﹣t),EO′=EM′=,∴,∴t=1.

②如图2中,∵GH∥O′M′,O′M′⊥AC,∴GH⊥AC,∴∠GHE=90°,∵∠EGH+∠HEG=90°,∠AEN′+∠OAC=90°,∠HEG=∠AEN′,∴∠OAC=∠HGE,∵∠GHE=∠AOC=90°,∴△GHE∽△AOC,∴,∴EG最大时,EH最大,∵EG=GN′﹣EN′===t=2时,EG最大值=,∴EH最大值=t=2时,EH最大值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网