题目内容
【题目】如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C经测量东方家具城D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,∠DAC=15°,求C、D之间的距离(结果保留根号).
【答案】解:∵由题意可得∠EAD=45°,∠FBD=30°,
又∵∠DAC=15°,
∴∠EAC=60°,
∵AE∥BF,
∴∠FBC=∠EAB=60°,
∴∠DBC=30°,
∴∠BDA=∠DBC﹣∠DAB=30°﹣15°=15°,
∴∠BDA=∠DAB,
∴AB=DB=2km,
∴∠ADB=15°,
∴∠DBC=∠ADB+∠DAC=15°+15°=30°;
过B作BO⊥DC,交其延长线于点O,
在Rt△DBO中,BD=2,∠DBO=60°,
∴DO=2×sin60°= ,BO=2×cos60°=1.
在Rt△CBO中,∠CBO=30°,CO=BOtan30°= ,
∴CD=DO﹣CO= ﹣ = (km).
即C,D之间的距离 km.
【解析】通过作垂线把特殊角放到直角三角形Rt△DBO、Rt△CBO中,利用平行线的性质,转化同位角得到∠CBO=30°,∠DBO=60°,进而 DO、CO,二者之差即可求出CD.
【题目】某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:
测试项目 | |||
测试成绩/分 | |||
甲 | 乙 | 丙 | |
教学能力 | 85 | 73 | 73 |
科研能力 | 70 | 71 | 65 |
组织能力 | 64 | 72 | 84 |
(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;
(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.