题目内容

【题目】已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.

(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;
(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.
①当点M与点C、D不重合时,连接CM,求∠CMD的度数;
②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.

【答案】
(1)

证明:如图1中

∵CA=CB,∠ACB=90°,

∴∠A=∠ABC=45°,

∵△CEF是由△CAD旋转逆时针α得到,α=90°,

∴CB与CE重合,

∴∠CBE=∠A=45°,

∴∠ABF=∠ABC+∠CBF=90°,

∵BG=AD=BF,

∴∠BGF=∠BFG=45°,

∴∠A=∠BGF=45°,

∴GF∥AC.


(2)

解:①如图2中

∵CA=CE,CD=CF,

∴∠CAE=∠CEA,∠CDF=∠CFD,

∵∠ACD=∠ECF,

∴∠ACE=∠CDF,

∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,

∴∠CAE=∠CDF,

∴A、D、M、C四点共圆,

∴∠CMF=∠CAD=45°,

∴∠CMD=180°﹣∠CMF=135°.

②如图3中

O是AC中点,连接OD、CM.

∵AD=DB,CA=CB,

∴CD⊥AB,

∴∠ADC=90°,

由①可知A、D、M、C四点共圆,

∴当α从90°变化到180°时,

点M在以AC为直径的⊙O上,运动路径是弧CD,

∵OA=OC,CD=DA,

∴DO⊥AC,

∴∠DOC=90°,

的长=

∴当α从90°变化到180°时,点M运动的路径长为


【解析】(1)欲证明GF∥AC,只要证明∠A=∠FGB即可解决问题.(2)①先证明A、D、M、C四点共圆,得到∠CMF=∠CAD=45°,即可解决问题.②利用①的结论可知,点M在以AC为直径的⊙O上,运动路径是弧CD,利用弧长公式即可解决问题.本题考查几何变换综合题、等腰直角三角形的性质、平行线的判定和性质、弧长公式、四点共圆等知识,解题的关键是发现A、D、M、C四点共圆,最后一个问题的关键,正确探究出点M的运动路径,记住弧长公式,属于中考压轴题.
【考点精析】解答此题的关键在于理解等腰直角三角形的相关知识,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网