题目内容

【题目】如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC
(1)求证:DE与⊙O相切;
(2)若BF=2,DF= ,求⊙O的半径.

【答案】
(1)证明:连接OD,

∵AB是⊙O的直径,

∴∠ACB=90°,

∴∠A+∠ABC=90°,

∵∠BOD=2∠BCD,∠A=2∠BCD,

∴∠BOD=∠A,

∵∠AED=∠ABC,

∴∠BOD+∠AED=90°,

∴∠ODE=90°,

即OD⊥DE,

∴DE与⊙O相切;


(2)解:连接BD,过D作DH⊥BF于H,

∵DE与⊙O相切,

∴∠BDE=∠BCD,

∵∠AED=∠ABC,

∴∠AFC=∠DBF,

∵∠AFC=∠DFB,

∴△ACF与△FDB都是等腰三角形,

∴FH=BH= BF=1,则FH=1

,∴HD= =3,

在Rt△ODH中,OH2+DH2=OD2

即(OD﹣1)2+32=OD2

∴OD=5,

∴⊙O的半径是5.


【解析】(1)连接OD,由AB是⊙O的直径,得到∠ACB=90°,求得∠A+∠ABC=90°,等量代换得到∠BOD=∠A,推出∠ODE=90°,即可得到结论;(2)连接BD,过D作DH⊥BF于H,由弦且角动量得到∠BDE=∠BCD,推出△ACF与△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH= BF=1,则FH=1,根据勾股定理得到HD= =3,然后根据勾股定理列方程即可得到结论.本题考查了切线的判定和性质,等腰三角形的判定,直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网