题目内容
【题目】如图,正方形中,,点在边上,且;将沿对折至,延长交边于点,连结、,下列结论中,正确的个数为( )
①;②;③;④
A.个B.个C.个D.个
【答案】D
【解析】
首先证明Rt△ABG≌Rt△AFG(HL),推出GB=GF,设BG=x,则GF=x,CG=BC-BG=3-x,在Rt△CGE中,GE=x+1,EC=2,CG=3-x,根据CG2+CE2=GE2,构建方程求出x即可判断①正确;
想办法证明∠AGB=∠GCF,即可判断②正确;
根据全等得出∠DAE=∠FAE,∠BAG=∠FAG.得出③正确;
只要证明,得出可得S△FCG=S△EGC,由此即可判断④正确;
①∵四边形ABCD是正方形,
∴AB=AD=CD=3,∠B=∠D=90°,
∵CD=3,CE=2DE,
∴DE=1,
∵△ADE沿AE折叠得到△AFE,
∴DE=EF=1,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
∵在Rt△ABG和Rt△AFG中,
AG=AG,AB=AF
∴Rt△ABG≌Rt△AFG(HL).
∴BG=FG,∠AGB=∠AGF.
设BG=x,则CG=BC-BG=3-x,GE=GF+EF=BG+DE=x+1.
在Rt△ECG中,由勾股定理得:CG2+CE2=EG2.
∵CG=3-x,CE=2,EG=x+1,
∴(3-x)2+22=(x+1)2,
解得:x=
∴BG=GF=CG=
即BG=CG,①正确;
②∵△ADE沿AE折叠得到△AFE,
∴△DAE≌△FAE.
∴∠DAE=∠FAE.
∵△ABG≌△AFG,
∴∠BAG=∠FAG.
∵∠BAD=90°,
∴∠EAG=∠EAF+∠GAF=×90°=45°
∴②正确.
∵CG=GF,
∴∠CFG=∠FCG.
∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF.
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG.
∴AG∥CF.
∴③正确;
④∵EF=DE=1,GF=
∴EG=
∴
∴S△FGC=S△EGC=
∴正确.
故选:D