题目内容

【题目】下面我们做一次折叠活动

第一步在一张宽为2的矩形纸片的一端利用图(1)的方法折出一个正方形然后把纸片展平折痕为MC

第二步如图(2),把这个正方形折成两个相等的矩形再把纸片展平折痕为FA

第三步折出内侧矩形FACB的对角线AB并将AB折到图(3)中所示的AD折痕为AQ

根据以上的操作过程完成下列问题

1)求CD的长

2)请判断四边形ABQD的形状并说明你的理由

【答案】1;(2)四边形ABQD是菱形.

【解析】试题分析:(1)首先证明四边形MNCB为正方形,然后再依据折叠的性质得到:CA=1,AB=AD,最后再依据CD=AD-AC求解即可;

(2)根据平行线的性质和折叠的性质可得到∠BAQ=∠BQA,然后依据等角对等边的性质得到AB=BQ,接下来,依据一组对边平行且相等的四边形为平行四边形可证明四边形ABQD是平行四边形,再由AB=AD,可得四边形ABQD是菱形.

试题解析:(1)∵∠M=∠N=∠MBC=90°,

∴四边形MNCB是矩形,

∵MB=MN=2,

∴矩形MNCB是正方形,

∴NC=CB=2,

由折叠得:AN=AC=NC=1,

Rt△ACB中,由勾股定理得:AB= =

∴AD=AB=

∴CD=AD﹣AC= ﹣1;

(2)四边形ABQD是菱形,理由是:

由折叠得:AB=AD,∠BAQ=∠QAD,

∵BQ∥AD,

∴∠BQA=∠QAD,

∴∠BAQ=∠BQA,

∴AB=BQ,

∴BQ=AD,BQ∥AD,

∴四边形ABQD是平行四边形,

∵AB=AD,

∴四边形ABQD是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网