题目内容
【题目】如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=6,点M、N分别为OA、OB边上动点,则△MNP周长的最小值为( )
A.3B.6C.D.
【答案】B
【解析】
作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2,与OA的交点即为点M,与OB的交点即为点N,则此时M、N符合题意,求出线段P1P2的长即可.
解:作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2,与0A的交点即为点M,与OB的交点即为点N,
△MNP的最小周长为P.
M+MN+PN=P1M+MN+P2N= P1P2,即为线段P1P2的长,
连结OP1、OP2,则OP1=0P2=6,
又∵∠P1OP2=2∠AOB=60。,
∴△OP1P2是等边三角形,
∴P1P2=OP1=6,
即△MNP的周长的最小值是6.
故选:B.
【题目】某年级共有300名学生,为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制)、并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100);
b.A课程成绩在70≤x<80这一组的是:
70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5
c.A,B两门课程成绩的平均数、中位数、众数如下:
课程 | 平均数 | 中位数 | 众数 |
A | 75.8 | m | 84.5 |
B | 72.2 | 70 | 83 |
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是______(填“A”或“B”),理由是________________________________;
(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.