题目内容
【题目】如图,△ABC中,∠C=90°.
(1)在BC边上作一点P,使得点P到点C的距离与点P到边AB的距离相等(尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,若AC=8,BC=6,求CP的长.
【答案】(1)见解析;(2).
【解析】
试题分析:(1)作∠BAC的平分线交BC于P点,则点P到点C的距离与点P到边AB的距离相等;
(2)作PD⊥AB于点,如图,根据角平分线性质得PD=PC,则可证明Rt△ADP≌Rt△ACP得到AD=AC=8,再利用勾股定理计算出AB=10,则BD=2,设PC=x,则PD=x,BP=6﹣x,在Rt△BDP中,利于勾股定理得(6﹣x)2=x2+22,然后解方程即可.
解:(1)如图,点P即为所求;
(2)作PD⊥AB于点,如图,
∵AP平分∠CAB,PD⊥AB于D,∠C=90°,
∴PD=PC.
在Rt△ADP和Rt△ACP中
,
∴Rt△ADP≌Rt△ACP(HL),
∴AD=AC=8,
在Rt△ABC中,AB==10,
∴BD=10﹣8=2,
设PC=x,则PD=x,BP=6﹣x,
在Rt△BDP中,∵PD2+BD2=PB2,
∴(6﹣x)2=x2+22,解得x=.
答:CP的长为.
练习册系列答案
相关题目