题目内容
【题目】据我囯古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三,股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.
(应用举例)
观察3,4,5; 5,12,13; 7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股,弦;勾为5时,股,弦;
请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24=__________;弦25=___________.
(2)如果勾用(,且为奇数)表示时,请用含有的式子表示股和弦,则股=________;弦=_______.
(3)继续观察①4,3,5;②6,8,10;③8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.请你直接用(为偶数且)的代数式来表示直角三角形的另一条直角边和弦的长.
【答案】(1);;(2);;(3);.
【解析】
(1)根据所提供的例子发现股是勾的平方减去1的二分之一,弦是勾的平方加1的二分之一;
(2)股是勾的平方减去4的四分之一,弦是勾的平方加4的四分之一.
(3)根据题意,得另一条直角边是一条直角边的二分之一的平方减去1,弦是一条直角边的二分之一的平方加上1.
(1)∵勾为3时,股,弦;勾为5时,股,弦;
∴勾为7,股24的算式为,弦25的算式为;
故答案为;;
(2)由题意,得股的算式为;弦的算式为
故答案为;;
(3)由题意,得另一条直角边的代数式为;
弦长的代数式为
故答案为;.
【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天) | 1 | 2 | 3 | 10 | … |
日销售量(n件) | 198 | 196 | 194 | ? | … |
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天) | 1≤x<50 | 50≤x≤90 |
销售价格(元/件) | x+60 | 100 |
(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.