题目内容
【题目】如图,在等腰△ABC中,AB=AC,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合.若∠CEF=50°,则∠AOF的度数是_____.
【答案】105°
【解析】
由折叠的性质可得OE=CE,∠CEF=∠OEF=50°,OF=FC,可求∠OCE=∠COE=40°,由等腰三角形的性质和线段垂直平分线的性质可求OAB=∠OBA=∠OAC=∠OCA=25°,由三角形内角和定理可求∠AOC=130°,即可求∠AOF的度数.
如图,连接OB,
∵点C与点O恰好重合,
∴OE=CE,∠CEF=∠OEF=50°,OF=FC,
∴∠OCE=∠COE=40°
∵AB=AC,AO平分∠BAC,
∴AO是BC的垂直平分线,∠OAB=∠OAC,
又∵DO是AB的垂直平分线,
∴点O是△ABC的外心,
∴AO=BO=CO,
∴∠OBC=∠OCB=40°,∠OAB=∠OBA=∠OAC=∠OCA,
∵∠OAB+∠OAC+∠ABO+∠ACO+∠OBC+∠OCB=180°
∴∠OAB=∠OBA=∠OAC=∠OCA=25°,
∵OF=FC
∴∠FOC=∠ACO=25°
在△AOC中,∠AOC=180°﹣∠OAC﹣∠OCA=130°
∴∠AOF=∠AOC﹣∠FOC=130°﹣25°=105°
故答案为:105°
练习册系列答案
相关题目