题目内容
【题目】如图,点E是正方形ABCD的边BC延长线上一点,连接DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.
(1)求证:DGBC=DFBG;
(2)连接CF,求∠CFB的大小;
(3)作点C关于直线DE的对称点H,连接CH,FH.猜想线段DF,BF,CH之间的数量关系并加以证明.
【答案】(1)见解析;(2)∠CFB=45°;(3)BF=CH+DF,理由见解析.
【解析】
(1)根据正方形的性质得到∠BCD=90°,证明∠BGC=∠DGF,得到△BGC∽△DGF,根据相似三角形的性质证明结论;
(2)连接BD,证明△BGC∽△DGF,根据相似三角形的性质得到∠BDG=∠CFG,根据正方形的性质解答;
(3)在线段FB上截取FM,使得FM=FD,连接DM,证明△BDM∽△CDF,得到BM=CF,根据等腰直角三角形的性质得到CH=CF,证明结论.
(1)证明:∵四边形ABCD是正方形,
∴∠BCD=90°,
∵BF⊥DE,
∴∠DFG=90°,
∴∠BCD=∠DFG,
∵∠BGC=∠DGF,
∴△BGC∽△DGF,
∴,
∴DGBC=DFBG;
(2)解:如图1,连接BD,
∵△BGC∽△DGF,
∴,
∴,
∵∠BGD=∠CGF,
∴△BGD∽△CGF,
∴∠BDG=∠CFG,
∵四边形ABCD是正方形,BD是对角线,
∴∠BDG=∠ADC=45°,
∴∠CFB=45°;
(3)解:BF=CH+DF,
理由如下:如图2,在线段FB上截取FM,使得FM=FD,连接DM,
∵∠BFD=90°,
∴∠MDF=∠DMF=45°,DM=DF,
∵∠BDG=45°,
∴∠BDM=∠CDF,
∵△BGD∽△CGF,
∴∠GBD=∠DCF,
∴△BDM∽△CDF,
∴,
∴BM=CF,
∵∠CFB=45°,BF⊥DE,
点C关于直线DE的对称点H,
∴∠EFH=∠EFC=45°,
∴∠CFH=90°,
∵CF=FH,
∴CH=CF,
∴BM=CH,
∴BF=BM+FM=CH+DF.