题目内容

【题目】已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,CDE=β.

(1)如图,若点D在线段BC上,点E在线段AC上.

①如果∠ABC=60°,ADE=70°,那么α=   °,β=   °;

②求α,β之间的关系式.

(2)请直接写出不同于以上②中的α,β之间的关系式可以是   .(写出一个即可.)

【答案】(1)20, 10;α=2β; (2)α=2β﹣180°α=180°﹣2β.

【解析】

(1)①先利用等腰三角形的性质求出DAE,进而求出BAD,即可得出结论;

利用等腰三角形的性质和三角形的内角和即可得出结论;

(2)①当点ECA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;当点ECA的延长线上,点DCB的延长线上,同(1)的方法即可得出结论.

(1)①∵AB=AC,ABC=60°,

∴∠BAC=60°,

AD=AE,ADE=70°,

∴∠DAE=180°﹣2ADE=40°,

α=BAD=60°﹣40°=20°,

∴∠ADC=BAD+ABD=60°+20°=80°,

β=CDE=ADC﹣ADE=10°,

故答案为:20,10;

②设∠ABC=x,AED=y,

∴∠ACB=x,AED=y,

在△DEC中,y=β+x,

在△ABD中,α+x=y+β=β+x+β,

α=2β;

(2)①当点ECA的延长线上,点D在线段BC上,

如图1

设∠ABC=x,ADE=y,

∴∠ACB=x,AED=y,

在△ABD中,x+α=β﹣y,

在△DEC中,x+y+β=180°,

α=2β﹣180°,

②当点ECA的延长线上,点DCB的延长线上,

如图2,同①的方法可得α=180°﹣2β.

故答案为:α=2β﹣180°α=180°﹣2β.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网