题目内容

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.
(1)判断DH与⊙O的位置关系,并说明理由;
(2)求证:H为CE的中点;
(3)若BC=10,cosC= ,求AE的长.

【答案】
(1)解:DH与⊙O相切.理由如下:

连结OD、AD,如图,

∵AB为直径,

∴∠ADB=90°,即AD⊥BC,

∵AB=AC,

∴BD=CD,

而AO=BO,

∴OD为△ABC的中位线,

∴OD∥AC,

∵DH⊥AC,

∴OD⊥DH,

∴DH为⊙O的切线


(2)证明:连结DE,如图,

∵四边形ABDE为⊙O的内接四边形,

∴∠DEC=∠B,

∵AB=AC,

∴∠B=∠C,

∴∠DEC=∠C,

∵DH⊥CE,

∴CH=EH,即H为CE的中点


(3)解:在Rt△ADC中,CD= BC=5,

∵cosC= =

∴AC=5

在Rt△CDH中,∵cosC= =

∴CH=

∴CE=2CH=2

∴AE=AC﹣CE=5 ﹣2 =3


【解析】(1)连结OD、AD,如图,先利用圆周角定理得到∠ADB=90°,则根据等腰三角形的性质得BD=CD,再证明OD为△ABC的中位线得到OD∥AC,加上DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为⊙O的切线;(2)连结DE,如图,有圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH;(3)利用余弦的定义,在Rt△ADC中可计算出AC=5 ,在Rt△CDH中可计算出CH= ,则CE=2CH=2 , 然后计算AC﹣CE即可得到AE的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网