题目内容

【题目】如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.

(1)求证:DE是半圆⊙O的切线.
(2)若∠BAC=30°,DE=2,求AD的长.

【答案】
(1)证明:连接OD,OE,BD,

∵AB为圆O的直径,

∴∠ADB=∠BDC=90°,

在Rt△BDC中,E为斜边BC的中点,

∴DE=BE,

在△OBE和△ODE中,

∴△OBE≌△ODE(SSS),

∴∠ODE=∠ABC=90°,

则DE为圆O的切线


(2)解:在Rt△ABC中,∠BAC=30°,

∴BC= AC,

∵BC=2DE=4,

∴AC=8,

又∵∠C=60°,DE=CE,

∴△DEC为等边三角形,即DC=DE=2,

则AD=AC﹣DC=6


【解析】(1)要证切线可须连半径,再证直线和半径垂直,出现直径时,连直径的端点和圆周上一点构成90°的圆周角,进而利用斜边中线性质可证出;(2)由DE可求出BC,由30°性质可求出AB,再利用三角函数可求出AD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网