题目内容
【题目】如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
(3)结合图像写出不等式的解集;
【答案】(1)y=,y=-x+7;(2)点E的坐标为(0,5)或(0,9);(3)0<x<2或x>12
【解析】
(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线,求出k、b的值,从而得出一次函数的解析式;
(2)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.
(3)根据函数图象比较函数值的大小.
解:(1)把点A(2,6)代入y=,得m=12,则y=.
得,解得把点B(n,1)代入y=,得n=12,则点B的坐标为(12,1).
由直线y=kx+b过点A(2,6),点B(12,1),
则所求一次函数的表达式为y=﹣x+7.
(2)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.
∵S△AEB=S△BEP﹣S△AEP=10,∴×|m﹣7|×(12﹣2)=10.
∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).
(3)根据函数图象可得的解集:或;
练习册系列答案
相关题目