题目内容

【题目】如图,在ABC中,BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD平分MAC,交BC于点D,交BE于点F.

(1)判断直线BE与线段AD之间的关系,并说明理由;

(2)若C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.

【答案】(1)BE垂直平分AD理由见解析;(2)存在,△ABD、△GAE是等边三角形.

【解析】

(1)根据余角的性质即可得到∠5=∠C;由AD平分∠MAC,得到∠3=∠4,根据三角形的外角的性质得到∠BAD=∠ADB,推出△BAD是等腰三角形,于是得到结论.

(2)根据∠5=∠C=30°,AM⊥BC,可得∠ABD=60°,∠CAM=60°,进而得到∠ADB=∠4+∠C=60°,∠BAD=60°,依据∠ABD=∠BDA=∠BAD,可得△ABD是等边三角形;根据∠AEG=∠AGE=∠GAE,即可得到△AEG是等边三角形.

解:(1)BE垂直平分AD,理由:

∵AM⊥BC,

∴∠ABC+∠5=90°,

∵∠BAC=90°,

∴∠ABC+∠C=90°,

∴∠5=∠C;

∵AD平分∠MAC,

∴∠3=∠4,

∵∠BAD=∠5+∠3,∠ADB=∠C+∠4,∠5=∠C,

∴∠BAD=∠ADB,

∴△BAD是等腰三角形,

∵∠1=∠2,

∴BE垂直平分AD;

(2)△ABD、△GAE是等边三角形.理由:

∵∠5=∠C=30°,AM⊥BC,

∴∠ABD=60°,

∵∠BAC=90°,

∴∠CAM=60°,

∵AD平分∠CAM,

∴∠4=∠CAM=30°,

∴∠ADB=∠4+∠C=60°,

∴∠BAD=60°,

∴∠ABD=∠BDA=∠BAD,

∴△ABD是等边三角形

Rt△BGM中,∠BGM=60°=∠AGE,

Rt△ACM中,∠CAM=60°,

∴∠AEG=∠AGE=∠GAE,

∴△AEG是等边三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网